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We apply reduced density-matrix functional theory to the parabolically confined quantum Hall droplet in the
spin-frozen strong magnetic field regime. One-body reduced density-matrix functional method performs re-
markably well in obtaining ground states, energies, and observables derivable from the one-body reduced
density matrix for a wide range of system sizes. At the strongly correlated regime, the results go well beyond
what can be obtained with the density-functional theory. However, some of the detailed properties of the
system, such as the edge Green’s function, are not produced correctly unless we use the much heavier two-

body reduced density-matrix method.
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I. INTRODUCTION

Quantum Hall fluids occur at low temperature in clean
two-dimensional electron systems exposed to a perpendicu-
lar magnetic field.!? Different phases are characterized by
the number v that tells the ratio of the number of electrons to
the number of single-particle states in a highly degenerate
Landau level (the number of flux quanta piercing the
sample). Near certain fractional filling factors v, the interac-
tions between electrons induce an energy gap and lead to a
ground state with topological order manifest in exotic quasi-
particles and non-Fermi-liquid edge modes.?!!

Straight from the outset, numerical simulations have been
an indispensable guide in development of the theory.* While
majority of the numerics are exact diagonalization studies
only viable with small electron numbers, variational Monte
Carlo'? and density-functional theory'>!# (DFT) have also
been applied to larger systems. For example, accurate wave
functions incorporating the complex nonperturbative effects
of electron interactions have been theoretically devised and
later backed up by the high overlap with exact numerical
results for small systems. Due to such developments, reason
behind the energy gap of simplest of the many fractions is
now well understood within the framework of composite-
fermion theory that allows for explicit construction of the
many-body wave function and calculation of topological
quantum numbers.® However, in going beyond the
composite-fermion theory to more complex phases, the
Monte Carlo method is crippled since a trustworthy trial
wave function for the phases we would be interested to know
more about is not known. In addition, owing to the strong
correlations, the DFT is inaccurate at, for example, the para-
digm fractional quantum Hall state at filling fraction
v=1/3 where the vortices supposed to form a bound state
with the electrons localize at fixed positions instead.’> Con-
sequently, the exact diagonalization is frequently the only
viable alternative, leaving the large electron numbers beyond
the reach of direct calculations, though the density-matrix
renormalization-group method has brought some progress
making a bit larger systems computationally feasible.!®!”

During the past ten years, reduced density-matrix func-
tional theory has been revived and applied successfully in the
chemical physics community.'®2° The method is known to
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handle, e.g., molecular dissociation limits better than stan-
dard DFT (Refs. 21 and 22) and it has recently been applied
to homogeneous electron gas.?>?* In this manuscript, we aim
to probe the potential of the one-body reduced density-
matrix functional theory (1-RDMFT) in a fractional quantum
Hall system, specifically a parabolically confined quantum
dot in the spin-frozen strong magnetic field regime. In con-
trast to many molecular and atomic systems where the domi-
nant occupation numbers are typically close to one, this is a
highly demanding application for any numerical method as
fractional quantum Hall states have long-range quantum en-
tanglement with all the occupation numbers small for ex-
ample near 1/3 in the v=1/3 state.

The performance of various functionals in predicting
ground states, energies, and observables attainable by the
reduced density matrix is compared for small system to the
exact diagonalization and Hartree-Fock (HF) with and with-
out the Brillouin-Wigner (BW) perturbation theory. For
larger systems with tens of particles, the comparison is done
utilizing the accurate Laughlin wave function* for filling
fraction v=1/3 state and Monte Carlo methods (MC). Ener-
gies are produced quite well in all systems at the strong-
correlation regime v<<1. Even the bulk densities appear rea-
sonably good and reproduce the predicted edge stripe
phase.” However, we are still dealing with an approximate
method that has its limitations. Detailed properties of the
edge of the electron droplet, such as the edge tunneling
exponent,’®?” are not produced correctly by the present func-
tionals.

For this reason, we also perform a small comparison with
the heavier two-body reduced density-matrix functional
theory?® (2-RDMFT) (see the closely related work in Ref.
29). Including the exact electron interaction by the two-body
reduced density-matrix functional appears to facilitate a
more accurate description of the edge, however with a com-
putational cost in large systems beyond the reach of present
day computers.

The rest of the manuscript is organized as follows. In the
next section, we briefly introduce the idea of reduced
density-matrix functional methods. In Sec. III, we describe
the model system and derive an exact formula for the energy
contribution due to one-body operators present in our Hamil-
tonian such that only the interaction energy remains to be
solved. Secs. IVA and IV B present the details of our
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1-RDMFT and 2-RDMFT implementations, respectively.
The 1-RDMFT results are divided according to the small or
large size of the system into Secs. V A and V B, followed by
the 2-RDMFT calculation in Sec. V C. Conclusions and fu-
ture prospects are found in Sec. VL.

II. REDUCED DENSITY-MATRIX FUNCTIONAL
THEORIES

The 1-RDMFT is based on the Gilbert’s theorem, which
guarantees that the ground-state expectation value of any ob-
servable is a unique functional of the 1-RDM 7.3 It follows
that the ground-state energy can be written as

F(y)=

drdr’ 8(r —¢')[T(r) + U(r)]y(r,r") + V.(y),
de

(1)

where 7 and U are the standard operators for the kinetic
energy and an external potential while the functional for the
interaction energy V,.[7y] is unknown. It is simple to show
that this functional yields the exact ground-state energy for
the exact 1-RDM

Y(r’r/) = Nf \I,*(r,rz,r3, e ’rN)
X W(r',ryrs, ..., ry)drydrsy ... dry (2)

if V.. is replaced by half the Coulomb energy of the exact
pair density

2 ’

e r,r
Y

2€) pd [r—r

pa(r,r") = N(N - l)J P (r,r’,rs, ...,ry)

X W(r,r',r;, ...,ry)drsy...dry. (3)
The 2-RDMFT minimizes the resulting exact functional F
subject to a subset of complete N-representability conditions,
known as the two-representability conditions, and other pos-
sible constraints due to additional symmetries (see Sec.
IV B). On the other hand, the crux of the 1-RDMFT is to
approximate the pair density by a functional of the 1-RDM.3!
The customary way to do the approximation, which we will
also employ in this paper, is to replace the pair density above
by

p(O)p(r') = 2 f(nn) ¢ ()G (X)by(X)pi(x'),  (4)
i

where p(r)=7(r,r) is the density at r, ¢, are the natural
orbitals (eigenvectors of 7y), and f is a function solely of the
natural occupation numbers n; € [0,1] (eigenvalues of 7).
The functional for the interaction energy in Eq. (1) then
reads
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TABLE 1. Functions f(n;,n;). S and W refer to the strongly and
weakly occupied natural orbitals, respectively.
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GU ”;2 VIl
MU-« i
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The form of f could vary in different type of systems,
whereas those used in this study are enlisted in Table I in
Sec. IV A. In analogy with the density-functional theory, the
first term is referred to as the Hartree term while the latter is
the exchange-correlation term. However, compared to the
DFT, 1-RDMFT has a couple of advantages. First, the
method obtains not only the density but the whole 1-RDM so
that the ground-state expectation value of any one-body ob-
servable can be readily computed. Thus, for example kinetic
and interaction energies can be readily separated and Green’s
functions calculated. Second, although both methods are, in
principle, exact for an exact functional, due to the variable y
(vs. p), it is easier to develop a good 1-RDM functional than
a good density functional. This is the reason why the DFT
does not work in the strongly correlated regime where the
proper treatment of electronic correlations is important.
However, there are fresh ideas of how to treat strongly cor-
related electrons with DFT. 3233

III. QUANTUM-DOT MODEL

The quantum Hall droplet is modeled by the two-
dimensional effective-mass Hamiltonian
* 2.2

e \2
N (p, + _Ai>
c m wyr
H= +
,-:21 2m” 2

2
5 ()

i<j Erlj

where N is the number of electrons, A is the planar vector
potential of the homogeneous magnetic field B perpendicular
to the sample plane, and the energy scale of the external

075321-2



REDUCED DENSITY-MATRIX FUNCTIONAL THEORY IN...

confinement potential fiw, is typically a few meVs. The ma-
terial parameters are the effective mass of the electrons
m*=0.067m, and the dielectric constant of the GaAs semi-
conductor medium e=12.7. Coulomb interactions tend to
spontaneously polarize the electron spins in an effect known
as quantum Hall ferromagnetism. For this reason, the rela-
tively weak Zeeman term has been omitted and the electrons
are assumed spin polarized. From here on, we use oscillator
units so that the energies are expressed in units of Zw and
lengths in units of V#/m"w where w?=w}+(w./2)? with cy-
clotron frequency w.=eB/m"c.
For N=1, the energy states are written as

n! _
W)=\ ———7"LND)e™?, m=-nn=0
w(n+m)!

(7

where z=x+iy and L are the generalized Laguerre polyno-
mials. The corresponding eigenvalues are given by

ho,
E'=2n+1+|1- 5 |m- (8)

We take on interest in developing a computational method
for the fractional quantum Hall states at the strong magnetic
field regime so we may assume that w,<w,. Then fiw./2 is
close to unity, such that the term in parentheses in Eq. (8)
becomes small and values of quantum number n other than 0
become irrelevant to the low-energy physics. This is the Lan-
dau level projection to the band with n=0. It should not be
difficult to generalize the 1-RDMFT method to include spin
and several Landau levels and study the region v>1 as well,
however, for simplicity we stick to the spin-polarized lowest
Landau level v=1 in this study.

Note that in our two-dimensional model, m in Eq. (7) is
the one and only angular momentum quantum number. We
can write the contribution to the total energy due to terms
other than the Coulomb interaction for a system of N elec-
trons in the lowest Landau level n=0 in terms of the total
angular momentum (quantum number) M exactly as

x A %
T+U=E[1+<1— ;C>mi}=N+<1— ;)C)M. 9)

i=1

As the total angular momentum operator M commutes with
the total Coulomb interaction energy operator V.., to solve
the Landau-level-projected spectrum, the remaining task is to
find the common eigenstates of the Landau-level-projected
V.. and M.

For N and M small enough, these are solved exactly with
the configuration interaction (CI) method (exact diagonaliza-
tion) since the number of possible single-particle states is
finite. We may go to a bit larger N and M by taking interest
in only the ground state and finding it by the Lanczos algo-
rithm (cf. Refs. 34 and 35). However, the exponential growth
of the many-body basis limits the particle number to around
ten depending on M and some kind of an approximate cal-
culation method becomes necessary. The Kohn-Sham DFT is
still a good method for the weakly correlated regime’® but
for larger M the natural occupations tend far from 1 and the
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DFT no longer gives us good results. Absence of a reliable
trial wave function for generic M makes the implementation
of variational Monte Carlo rather uncertain.'>37 In this paper
we are going to see, if the reduced density-matrix functional
theory can make itself useful. The expectation is that it will
work better than DFT at least when the eigenvalues of the
density matrix are small meaning v<< 1. With several Landau
levels, this would correspond to the situation where the
highest-occupied Landau level has low filling fraction.

IV. COMPUTATIONAL METHODS
A. 1-RDMFT

Due to the exact formula for the one-body operators’ en-
ergy contribution [Eq. (9)], the energy functional of Eq. (1)
simplifies to

ho,

5 >M+ Vel 7] (10)

F[')/]:N+(l -

with the constraints that the particle number and the total
angular momentum are N and M, respectively. Moreover, the
natural orbitals for energy state |¥) in the lowest Landau
level are directly the single-particle energy states since the
angular momentum conservation yields a diagonal density
matrix in this basis

Yimm' =<\P|a;am’|q’>= 5mm'nm’ (11)

where a,, and its adjoint annihilate and create a particle with
quantum numbers n=0 and m [see Eq. (7)]. As N—1 particles
have at least a total angular momentum (N—1)(N-2)/2, the
maximum single-particle angular momentum becomes
k=M—(N—-1)(N-2)/2. Therefore, the minimization of the
interaction energy reduces to the constrained minimization of
a function whose variables are k+ 1 occupation numbers

1
Vee({ni}i';o) = 52 (ninjvijij _f(ni,nj)vijji)’ (12)
i

where V;, are the interaction matrix elements of the lowest
Landau level orbitals computed in Ref. 38 and the con-
straints are explicitly written as

k k
> n,=N and > n,m=M. (13)

m=0 m=0

To optimize the occupation numbers, we first express them in
terms of variables 6; such that n;=sin? 6,. The minimization
of V.. with the above two remaining constraints is then per-
formed with the interior point or Nelder-Mead algorithm of
MATHEMATICA.*

A vast number of functions f(n;,n;) have been proposed
in the literature in treatment of simple atoms and molecules,
and it is not immediately clear, which of them would work
well in the current system. Table I summarizes those used in
this work for small systems to find out the optimal ones. For
large systems, we only use the density-matrix power func-
tional f(n;,n;)=(n;,n)* (P-a).** Each form of the off-
diagonal f(n;,n;.;) corresponds to two different functions,
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first of which has diagonal f(n;,n;)=n; while the second has
f(n,»,n,-):niz. Since the natural orbitals are orthonormal, inte-
gration of the approximate pair density in Eq. (4) over the
coordinates yields the proper normalization N(N-1) for
f(n;,n;)=n,. The form n?, on the other hand, is justified as it
cancels the self- mteractlon terms V;; arising from the Har-
tree term.

A few words about different forms of the off-diagonal
terrns are in order (see last column in Table I). The form

j “for f was first introduced by Miiller (MU), who found

=1/2 to be the optimal value.'® Goedecker and Umrigar*’

(GU) used the modification to the diagonal that removes the
self-interaction terms. Much similar to the density-matrix
power functional, we generalize these to MU-« and GU-«
where the square root is replaced by an arbitrary power, pre-
sumably lying between half and one. Alternatively, it is often
physically motivated to reduce the overcorrelation of MU by
switching the sign of the off-diagonal terms between weakly
occupied natural orbitals W (BBC1) or additionally banish-
ing the square root for pairs of strongly occupied orbitals §
(BBC2).>?3 For simplicity, we define the strongly and
weakly occupied orbitals directly from the Hartree-Fock so-
lution where the occupations are 0 or 1.

Finally, we would like to point out an issue with the
physicality of the obtained solution, which is generally more
of a problem in the higher-order RDM methods. Specifically,
Coleman has shown that necessary and sufficient condition
for the 1-RDM to be N representable, meaning that there
exists |\I’) in the Hilbert space of the system such that
v;;=(¥]aja|¥), is that its eigenvalues are between 0 and 1
and their sum is N.*' However, if we additionally demand a
symmetry, it may be that the obtained solution is not repre-
sentable in the symmetry-restricted part of the Hilbert space.
To be explicit, if in our model we demand total angular mo-
mentum of a two electron system to be 2, the symmetry-
restricted Hilbert space of states with m=0, 1, and 2 consists
only of one state with occupations (1,0,1) while 1-RDM
method could give us unphysical occupations (0.5,1,0.5)
both having the same particle number and angular momen-
tum (0.5X0+1X140.5X2=2). While this could be
avoided by imposing additional constraints, we refrain from
doing it as that would be exponentially unfeasible for larger
systems. Additionally, it is plausible that the unphysical so-
Iutions have less weight when the size of the physical Hilbert
space increases.

B. 2-RDMFT

In analogy with the 1-RDMFT, we now minimize a func-
tional of the 2-RDM
I} =(¥ala alak|q'> (14)

The marked difference is that we now have an exact func-
tional for the interaction energy

ee(r 7. E F;([Vl]kl (15)
i,j.k,0

however, with the cost of large number of additional param-
eters to optimize with similarly large number of additional
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constraints. Furthermore, the set of constraints to be listed
below form a relatively stringent set of necessary conditions
that only in special cases is sufficient for the obtained solu-
tion to be exactly N representable, meaning a physical |¥) to
exist such that Eq. (14) holds.

The minimization of the functional (15) is performed by
forming an augmented Lagrangian function and minimizing
it following the algorithm in Ref. 42. The minimization is
performed with limited memory quasi-Newton algorithm of
MATHEMATICA and the form of the augmented Lagrangian is

L=Fy]- 2 Nei+ 2 ¢, (16)

where \; are the Lagrange multipliers and x>0 is the aug-
mentation parameter used to enforce the convergence of the
constraints ¢;=0. In the following, we first introduce the sub-
set of applied N-representability conditions, and after that,
impose the further constraints due to the fixed total angular
momentum, M representability.

1. N representability

The trace condition

E I‘Zz M (17)

i<j 2

is used to fix the particle number to N.

Positivity conditions form the major part of the
N-representability constraints. Consider an operator of the
form A=X;; ifii. G di, - a;. Since (PJATA|W) =0,
it follows that

g Thbel =

2 tll’Z""’lktJIJZ""’]kF/lJZ A 0. (18)
Figse - otk

J1i2s -k

For k=2 we obtain the two-positivity condition for the
2-RDM

2 = 0. (19)

ij

Kl
By a different choice of A, positivity conditions of the exact
same form can be derived for the two other representations
of the 2-RDM

ol = <‘1’|a,-aja?aZ|‘I’>
and

” = (‘I’|a a;ak|‘1’>. (20)

While the representations I', O, and G are all equivalent as
they are related by the fermionic anticommutation rules, the
positivity conditions are inequivalent and must be taken into
account simultaneously. We use the antisymmetric
basis |(ij))=(|ij)-|ji))/2 for T and Q matrices since
I‘}jlz—F,’(’l_—I‘},’{ and Q})=— Q{cl_ Q Furthermore following
Ref. 42, since all the three matrices are real and symmetric
under ij«kl, the positive-definite condition can be ac-
counted for simply by writing the matrices as square of sym-
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metric matrices '=R?, 0=$? and G=T" (meaning
FE%:E'(M)R&)RE%), etc.) and. optimizin.g the.upper diagonal
of matrices R, S, and T. The linear relations linking I" and Q

and I' and G become the relevant constraint equations

=T} - OuYji = OiYik + OuYix + OYiu+ 6ubji— 6y0s
jSjlz @lyik—r;zj, (21)
where the 1-RDM v;; may be obtained through
2 Gh=Ny; or ZTji=0N-1y.  (22)
k k

2. M representability

Since 3mala;|W)=M|¥), we can form one independent
nontrivial equation involving 2-RDM (equivalent to the con-
tracted Schrodinger equation in Ref. 29)

> mGl= My;;. (23)
k
The trace of this is already fixed by Egs. (17) and (22)

> m;G=MN. (24)
ij

T

Since in our system the angular momentum quantum
numbers m;=j are always non-negative, the maximum
angular momentum for a pair of electrons to have is
ky=M—(N-2)(N-3)/2 where the subtracted term is the
minimum angular momentum of N-2 electrons. Addition-
ally, some of the matrix elements of the 2-RDM are zero
because states with different total angular momentum are
orthogonal. The independent constraints due to these consid-
erations read

I)=0, i+j#k+1or i+j>k (25)

while Eq. (21) communicates them to Q and G. Though we
can just drop the corresponding terms from our equations,
we still need to take into account the ensuing constraints on
the actual variables R, S, and 7.

C. Monte Carlo

The calculation of the natural orbital occupations is rela-
tively simple using the Monte Carlo technique. Unlike in the
previous Monte Carlo study in Ref. 43, we know from the
start the natural orbitals that diagonalize the density matrix
and thus we only need to calculate the occupations.

Starting from the definition in Eq. (2), the orthogonality
of the natural orbitals, and the expansion of 1-RDM using
the natural orbitals

YE,E) = 2 1, (1) (1) (26)

the occupations are integrated as
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n, =NJ U (rp,ry, .. )W (', r,,...)

X ¢,(r) b, (x))dr'dry, ... dry. (27)
This is further reformulated as
P(r',r,,...)
=N| |¥(r,r,,.. ) ——————=
Ny J| (ry.r; )| W(r,ry...)
X ¢(r) ¢, (x))dr'dry, ... dry, (28)

which can be symmetrized and rewritten in Monte Carlo ex-
pectation value as

=\ > f Mcﬁm(rm(r')dﬂ ,

7 J Y(r,r,,...) P

where the summation is over the coordinates {r;},. The first
strategy for Monte Carlo evaluation of the occupation is to
sample these coordinates from |W|? and to integrate over r’
on a grid.¥

For a better option in our case, we first rewrite

&,(r;) ¢fn(r’)=|¢m(r’)|2% and then do a Monte Carlo in-

tegration also over r’ as

\I’(l‘,,rz, . ) ¢m(ri)
= , (29
m < i \I,(l‘l,rz, .. ) ¢m(r,) >{ri}5|‘l’|2’r’ E‘¢m|2 ( )

i

where {r;}Y, is again sampled from |W¥|?> and r’ from |,
This option can be made more stable by noting that the natu-
ral orbitals have rotation symmetry and |¢,,(r')|> depends
only on the radial coordinate ' and not on the angle 6'.
Now, the radial integral over r’ can be done using Monte
Carlo integration and the angular integral by averaging over
a uniform grid {9]'}5\;”] as

1 ‘I’(I",I‘z,...) ¢m(ri, 01)
nm= _2 ’ ’ N
NB’ ij \P(rl’r27~~~) (ybm(r ,6) {1','}5‘\1"2»’/5‘</’m|2

Notice that r’ is generated separately for each ¢,,.

V. RESULTS

In the following, we will first compare the performance of
various 1-RDM functionals in calculating the interaction en-
ergies in different (N, M) sectors in exactly solvable small
quantum Hall droplets. This analysis is deepened by analyz-
ing the occupation numbers obtained for the ground states.
Once we have established that we have a decent functional,
we proceed to test its performance in larger systems. Since
no exact results are available for larger systems at the
strongly correlated regime v»<<1, we employ the next best-
gripping handle, which is the Laughlin’s variational wave
function for filling fraction v=1/3. Moreover, we compare
the energies and occupations obtained with density-matrix
power functionals (P-«) to the results extracted from the
Laughlin’s wave function with Monte Carlo techniques.
From the occupation numbers we calculate the edge Green’s
function Gg, which gives information about the topological
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FIG. 1. (Color online) The minimum interaction energy V.. at each angular momentum M for (a)—(c) four and (d)—(f) six electrons. The
exact diagonalization ground states detected by the convex envelope are marked with circles in (a) and (d).

order of different quantum Hall phases. It is interesting to see
if the newly applied methods (1-RDMFT and 2-RDMFT)
reproduce the correct decay properties of Gg.

A. Toward a good 1-RDM functional in small quantum Hall
droplets

The energy states of the quantum dot may be written as

Eyny=Nho+ (ho-fhol2)M + V. (M,N), (30)

where V), (M,N) is the nth eigenvalue of the total interaction
energy in sector (M,N), whose dependence on the physical
parameters is scaling by a factor e?/el. Because of the sec-
ond term, it follows that all possible ground states for N
particles are found at the intersections of the M-V, curve
and its convex lower envelope.

Figure 1(a) shows the M-V, curves for four electrons
computed with the CI, HF method, and the BW second-order
perturbation theory to the HF state. The exact diagonaliza-
tion (CI) ground states, detected by the convex envelope, are
marked by circles. While both HF and BW predict the cor-
rect ground states, the perturbation theory leads to a signifi-
cant improvement to the HF energy. The second-order per-
turbation theory is very accurate and close to the CI result for
M <14, and it is roughly halfway between HF and CI energy
for M > 14.

Physically the cusp structure seen in the results follows
from the energetic advantage of a configuration, in which the
four electrons are located at vertices of a square. This con-
figuration has nonzero weight only if the angular momentum
attains a special value such that N(N—1)/2=mod(M,N).
The difference between subsequent magic angular momen-
tum states is the number of vortices found at the center of the
system. As magnetic field is increased, vortices that carry

quantized angular momentum, and in a sense-quantized mag-
netic flux, emerge at the center. As the particle number is
taken very large, the number of cusps increases while all
cusps no longer correspond to a ground state at certain sys-
tem parameters. Instead, a few of them are more special than
others forming the incompressible vacuum state of certain
fractional quantum Hall phase as the remaining cusps are
related to the quasiparticle/vortex excitations that are even-
tually responsible for the finite extension of the quantum
Hall plateaus.

The corresponding energies obtained with 1-RDMFT are
shown in Figs. 1(b) and 1(c). At this point the choice of
parameters @=0.75, =0.7, and a=0.65 for MU-«, P-«, and
GU-a is an educated guess, whereas the effect of the param-
eter & becomes apparent in the next section (basically, it
tunes the strength of electron correlations). Typical to
1-RDMFT calculations in general, the energies are below the
CI result. The dashed lines systematically lie below the solid
lines of the same tone due to the self-energy cancellation
present in the latter. Basic MU and GU functionals clearly
overestimate the correlation energy and behave even qualita-
tively wrong as they fall too fast with increasing M. For the
rest of the functionals, V., seems to decline at about the
correct rate as a function of M. However, a nice cusp struc-
ture is only seen with the BBCIS and BBC2S functionals,
which inherit the cusps from the HF state used in the selec-
tion of the strongly and weakly occupied orbitals. Overall the
energetically best of these [-RDM functionals (P-0.7, GU-
0.65, BBC1S, and BBC2S) perform better than the second-
order perturbation theory when M > 14, although only
BBC2S produces the correct ground-state structure.

The equivalent curves for six electrons are shown in
Figs. 1(d)-1(f). As the six-electron results are quantitatively
like the four-electron results, the performance of different
functionals seems to be rather insensitive to the particle
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FIG. 2. (Color online) The occupation numbers for selection of the four-electron (upper panel) and six-electron (lower panel) ground
states indicated in Figs. 1(a) and 1(d), respectively. A bar that fills the assigned height corresponds to occupation number 1. Occupations are
ordered according to the increasing single-particle angular momentum m of the lowest Landau-level orbitals starting with O at the left.
Because most likely location of electron at orbital m is at distance r=ym from the center, one can think the set of orbitals as a radially

discretized disk.

number. For six electrons, the cusps should occur at
N(N-1)/2=mod(M,N) or N(N-1)/2=mod(M,N-1) cor-
responding to a hexagonal configuration or a pentagonal con-
figuration with one electron at the center. All the cusps are
not correctly reproduced with any 1-RDM functional, though
BBC2S result follows the cusp structure quite well at
M>217.

The quantum Hall droplet model has the property that an
increase in M increases the area of the droplet and also the
electronic correlations quantified in reduction in the occupa-
tion numbers of the natural Landau-level orbitals. The aver-
age occupation number of the relevant orbitals is close to the
corresponding macroscopic quantum Hall filling fraction v
and becomes exact as N is taken to infinity. For example, the
v=1 state occurs at the minimum angular momentum
M=N(N-1)/2 where the first N orbitals have occupation 1.
Second example is the Laughlin’s wave function* for filling
fraction v=1/3

WPz} = I - Zj)Se_l/ZEizizi- (31)
i<j

It has angular momentum M=3N(N-1)/2 and 3(N-1)+1
nonempty orbitals such that on average the fraction
v=N/[3(N-1)+1]=1/3 is filled. The Laughlin state has
about 0.98 overlap with the exact ground state for four and
six electrons, and it is the lowest angular momentum zero-
energy state of the short-range model interaction**

Vilzy) = az[(?z’,ia(zi —z)+ie . (32)

Note, however that while for four electrons the highly corre-
lated Laughlin state occurs at M =18 near the center of the M

window in the M-V, curves, the corresponding angular mo-
mentum for six electrons is M =45, and it is the highest M
included in the corresponding figures. Overall, it seems that
the perturbation theory works energetically well near v=1
where the correlations are weak while the 1-RDM function-
als perform better at the strongly correlated regime v<<1,
which raises some hope for the 1-RDMFT to prove valuable
in quantum Hall systems.

But how close are the obtained minimizing 1-RDMs ac-
tually to the exact results? Recall that the natural orbitals in
the lowest Landau level are fixed and their occupations com-
pletely specify the 1-RDM. Figure 2 shows the occupation
numbers corresponding to the ground states indicated in
Figs. 1(a) and 1(d).

Looking at the first row of occupation numbers for four
electrons, the next HF ground state is obtained from the pre-
vious by adding a hole to the center leading to angular mo-
mentum increase N. The exact CI result below is similar but,
in addition, the correlations spread the occupations at each
step. On the third row, the second-order perturbation theory
BW has a small spread of occupations in accordance with the
energy curves in Fig. 1(a). The 1-RDM functional results on
the following nine rows are varied in nature. In accord with
the poor energies, MU functional leads to a way too large
spread of occupation and so does the GU although the latter
also pins some occupations to one. The inclination toward
pinning is due to the self-energy cancellation since without
the cancellation nonpinned occupations lead to negative self-
energy contribution lowering the total energy (niz—ni<0 for
0<n;<1). This is the reason why MU-0.75 is more spread
out than GU-0.65, and BBC occupations are a bit less pinned
than BBCS occupations. Despite the better energetics, the
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FIG. 3. (Color online) The occupation numbers at the angular momentum of the 1/3 Laughlin state for (a) N=10, (b) N=20, and (c)
N=30 electrons with 3(N—1)+ 1 natural orbitals. MC is the exact Laughlin wave-function result extracted with Monte Carlo. The dashed line

marks 1/3 occupation.

GU-0.65, BBCI1S, and BBC2s occupations seem not to be
much better than the second-order perturbation theory. On
the contrary, P-0.7, on the other hand, has both quite good
energy and occupations numbers only slightly less spread
than the exact result. Note however, the nonzero first occu-
pation at M =26 and M =30 in contrast to the exact result.

For six electrons [Fig. 1 (lower)], the occupations are
similar. Note the high probability for one electron to be at the
center in some of the HF and CI ground states, correctly
reproduced by many of the functionals. The six-electron oc-
cupation numbers at M =30 and M =35 can be directly com-
pared to the occupations obtained with DFT in Ref. 15 and
they are found to be a bit similar to our BBC1 or BBC2
results.

On the whole, the P-0.7 power functional seems like a
good candidate functional for systems with large number of
electrons. GU-a with «<<0.65 and MU-a with a>0.75
could also work well, however, since the diagonal part of the
P-a functional is somewhat a compromise between these
two, we employ the P-a functional in the remainder of the
manuscript.

B. 1-RDM at large N

The results of the previous section suggest that the
density-matrix power functional (P-a) could be a good func-
tional in quantum Hall systems and thus we apply it to large
systems for a few parameters a. Moreover, we concentrate
on the v=1/3 state, whereby close to exact nonperturbative
results can be computed with the Laughlin’s variational wave
function [Eq. (31)] using Monte Carlo. It is natural to limit
the number of natural orbitals to that of the Laughlin wave
function 3(N-1)+1 although the realistic Coulomb ground
state would actually extend, weakly though, to a few more
orbitals.

The occupation numbers obtained in such way for N=10,
N=20, and N=30 are presented in Fig. 3. As seen in the
exact result [first row in Fig. 3(a)] the long-range Coulomb
correlations cause oscillations in the occupations around 1/3
(CI), apart from the edge density modulation not present in
the Laughlin’s occupation numbers (MC). Sliding « from 0.6
to 0.75 gradually strengthens these oscillations. P-0.65 is
close to the Laughlin’s occupations while P-0.675 is close to

the exact occupations (CI). Similar behavior is seen at larger
particle numbers in Figs. 3(b) and 3(c), where P-0.675 yields
again occupations plausibly closest to the exact unknown
result.

The oscillations in the occupation numbers reflect the for-
mation of an edge striped phase. An extrapolated phenom-
enological formula for the slow-decaying charge-density os-
cillations at the »=1/3 edge at the thermodynamic limit is
given in Ref. 25

o(s) = é[Erf(s) + 1]{1 + %Jo{g(s - 1)]}, (33)

where s/12 is the distance from the edge located at
V3(N-=1), Erf is the Gauss error function, and J, is the
Bessel function of the first kind. Figure 4(a) shows the radial
charge densities (W[ (r)yd(r)| W) calculated from the 30
electron occupation numbers compared to the extrapolated
formula red (dark gray) dashed line. The latter has slightly
longer oscillation wavelength compared to the P-a results
while the amplitude of oscillations suggests that the optimal
value of « is somewhere between 0.675 and 0.7. Thus, al-
though Eq. (33) has zero free parameters, it matches the
1-RDM results reasonably well.

Edge Green’s function Gg is the amplitude for electron to
propagate a distance along the edge. In the quantum Hall
droplet, the distance is related to the angle 6 between the two
points, and Gg=(¥|"(z0e'%) (z,)| W), where z, is a point of
the edge. Chiral Luttinger-liquid theory of the fractional
quantum Hall edge predicts the universal asymptotic
behavior®!?

|G| o |zge" = 2| 7% o« [sin(6/2)[ %, (34)

where g=3 for v=1/3. Values of g+# 1 lead to non-Ohmic
current-voltage dependence [«V¢ in the tunneling
experiments. However, thus observed experimental value,
g=2.2-28, is contrary to the theory possibly sample
dependent.?%?’

The decay of |Gg| calculated with the density-matrix
power functionals is compared to the exact (CI) and the
Laughlin wave function’s result (MC) in Figs. 4(b) and 4(c)
for N=10 and N=20, respectively (not shown case N=30
looks similar). The short lines signify power-law exponents
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FIG. 4. (Color online) (a) 30 electron-density profiles corresponding to Fig. 3(c) shifted vertically by 0.5 unit. Red (dark gray) dashed line
is the phenomenological estimate for the density oscillations at the thermodynamic limit. [(b) and (c)] The decay of the edge Green’s function
calculated at r=v3(N—1)+1 from the occupations in Figs. 3(a) and 3(b), respectively. The short red lines illustrate slopes —3 (theoretical

prediction for v=1/3) and —1 (Fermi liquid).

g=1 and g=3. Except for the curve corresponding to P-0.75,
which oscillates heavily, the P-a curves follow closely the
theoretical dashed black line until sin(6/2) = 0.3, after which
they sheer off the course to yield an exponent 1. This is due
to the incorrect weights of the occupation numbers near the
edge of the system and investigated further in the next sec-
tion where we apply 2-RDMFT to a smaller system.

The interaction energies are shown in Table II. The exact-
ness of the Laughlin trial wave function’s energy (MC) up to
0.1% for N=10 is expected to carry on to the larger electron
numbers. The interaction energy is seen to increase as a func-
tion of a in P-a and is optimal with the functional P-0.7,
which attains 99.9% of the interaction energy for N=20 and
30. Typical to 1-RDMFT calculations, in general, the ener-
gies are mostly below the assumed nearly exact Monte Carlo
energy.

While knowledge of the ground-state energy may be use-
ful when comparing different methods, only energy differ-
ences are physically meaningful. In the RDM methods, we
can calculate the energy differences between lowest energy
states of different (M,N) sectors such as addition energy

TABLE II. Interaction energy in units of e?/€l at angular mo-
mentum M=3N(N-1)/2 and the percentage captured of the energy
of the Laughlin wave function for density-matrix power functionals
P-a.

N=10 N=20 N=30
N=10 N=20 N=30 (%) (%) (%)

CI 10.14 99.9
MC 10.15 3292 6400 1000 100.0  100.0
P-0.6 893 3036 6008 880 922 939
P-0.65 958 3172 6215 944 964  97.1
P-0.675 987 3234 6310 972 982 986
P-0.7 10.12 3288 6393 997 999  99.9
P-0.75 1044 3344 6480 1029 1016  101.2

(change in N) as well as quasiparticle and some edge excita-
tions (M changes). If the excited state becomes the ground
state for some parameters, the Gilbert’s theorem guarantees
the existence of a 1-RDM functional minimized by the exact
1-RDM but even if this is not the case, a good functional
might still exist.

As mentioned previously, some of the cusps in M-V,
curves correspond to the quasiparticle excitations of stable
quantum Hall phases. Next, we consider such a quasihole
excitation above the v=1/3 state. The quasihole is a charged
vortex carrying fractional charge g=e/3 and obeying
anyonic statistics.*% To obtain interaction part of the quasi-
hole excitation energy at v=1/3, we need to calculate the
difference V..(M,;3+N,N)=V.(M,;5,N). The angular mo-
mentum M;;+N follows from the Laughlin’s quasihole
wave function, which is also used to compute an estimate for
V.(M,3+N,N) with Monte Carlo. Due to the fact that
Laughlin’s wave function is more accurate than the quasihole
wave function, variational principle implies that the Monte
Carlo estimate to the (negative) contribution to the excitation
energy is likely an upper bound to the exact result. Never-
theless, for eight particles the difference to exact CI result is
less than 0.2% so we expect the estimates to be quite accu-
rate. The quasihole wave function reads

Vi (e =1 G- zew ] @ =z)’e >, (35)

i<j

where zcy=(1/N)Z;z;. The interaction contribution to the ex-
citation energy is shown in Table III. The power functionals
appear to overestimate the energy gap by 10-20 % com-
pared to the trial wave function though the results seem to
get more accurate with increasing N. This preliminary result
indicates that the method could prove useful in assessing the
stability of different models for quantum Hall phases charac-
terized by certain angular momentum and spin. Additionally,
1-RDM method offers a simple framework to include the
higher Landau levels, however, instead of the bare eigenval-
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TABLE III. Interaction energy of one elementary quasihole ex-
citation in units of e?/el and the percentage captured of the inter-
action energy of the wave functional quasihole model (MC).

N=10 N=20 N=30

N=10 N=20 N=30 (%) (%) (%)
MC -0.314 -0.497 -0.635 100 100 100
P-0.6 -0.396  -0.601 —0.758 126 121 119
P-0.65 -0.381 -0.588 —0.736 121 118 116
P-0.675 -0.376 -0.583 —0.733 120 117 115
P-0.7 -0.376 -0.584 -0.689 120 118 109
P-0.75 -0.378 -0.585 -0.326 120 118 51

ues of the reduced density matrix, one must then optimize
the eigenvectors also.

C. 2-RDMEFT results for three electrons

In this final part, we apply the exact 2-RDM functional
[Eq. (3)] to a three electron droplet in the 1/3 state again with
the maximum single-particle angular momentum set to
3(N-1). We will see that the resulting 2-RDM, though not
strictly physical, is close to the exact solution and yields
better results than our 1-RDM functionals.

Compared to the 1-RDM calculations seen above, the
computational cost of the problem in the 2-RDM optimiza-
tion is considerably larger and scales at higher order p® (ver-
sus p*) with the number of single-particle orbitals p. The 1/3
Laughlin state for three electrons has angular momentum
M=9 and requires only seven single-particle states. How-
ever, the number of optimization variables in I', Q, and G are
276, 378, and 1225, respectively, and the constraint Egs.
(17), (21), (23), and (25) together lead to 2798 constraints
each facilitated by a Lagrange multiplier. In practice, this
means that this method takes more time than exact diagonal-
ization in any system that could be solved in a reasonable
time. However, owing to the exponential scaling of the exact
diagonalization problem, the situation could change in future
with development of faster computers and more efficient
semidefinite programming and optimization algorithms.

Figure 5 shows the occupation numbers and the decay of
the edge Green’s function for three electrons at v=1/3
[M=3N(N-1)/2=9]. Due to a finite-size effect, the exact
diagonalization Green’s function has a downward cusp at
sin(6/2)=0.9. The 2-RDMFT result has a similar cusp while
the P-0.675 result, which turns smoothly to a lower slope
decay, does not have one. We verified that this is due to the
difference in the weights of the last three occupation num-
bers corresponding to the edge of the system. Since the HF
solution would have exponent g=1, the correct decay prop-
erty of the Green’s function follows from the off-diagonal
terms of the interaction operator. The 1-RDMFT that only
uses the diagonal V;;; and V;;;; terms of the interaction ma-
trix cannot yield the correct behavior unless we have a very
good density-matrix functional.

Recall that the backbone of the 1-RDMFT was the ap-
proximation of the pair density. Figure 5 shows the pair-

PHYSICAL REVIEW B 81, 075321 (2010)
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FIG. 5. (Color online) The decay of the edge Green’s function
corresponding to the inset three-electron occupation numbers. As
previously, the short red lines illustrate slopes —g=-3 and -1, and
G is evaluated at r=v3(N-1)+1.

correlation functions corresponding again to exact diagonal-
ization, 2-RDMFT, and P-0.675, where the latter is
reconstructed from the 1-RDM using Eq. (4). Although the
1-RDM reconstructed pair-correlation function is reasonable
vanishing at the position of the fixed electron, only the
2-RDMFT is able to produce the two-peak structure of the
exact result with reduced density along the y axis (Fig. 6).
Granted that the interaction energy functional in the
2-RDMFT is exact, the results still do not coincide with the
exact diagonalization results because the three-
representability conditions that ensure the physicality in this
three-electron system cannot be taken into account without
invoking the generalization of 2-RDMFT to include higher-
order RDMs. Figure 7(a) shows the exact nonzero matrix
elements of the 2-RDM FEZI)) in the antisymmetric basis
|(ij)y=(|ij)=|ji))/2 and (b) calculated with the 2-RDMFT.
The largest discrepancy between the results is the vanishing
of the matrix elements involving states |(14)) or [(25)) for the

FIG. 6. The pair-correlation function g(z;,z,)=p(z1,22)/p(z1)
with the first coordinate placed at the density maximum of the nega-
tive y axis z;=—i\3 for (a) exact diagonalization, (b) 2-RDMFT,
and (c) 1-RDMFT with P-0.675. Contours are separated by
0.05 1/4rl? and start from 0.05 1/7r/% in (a) and (b) and from O in
(c).
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FIG. 7. (Color online) Illustration of the 2-RDM FE;{Z)) for three electrons in the v=1/3 state computed with (a) exact diagonalization and
(b) 2-RDMFT. The same color bar applies to both figures while zero values are left white. The negative matrix elements are indicated by

black edge.

exact result while for example FE??&%O in the 2-RDMFT
result. The matrix elements should vanish, as they are related
to the fictitious many-body basis states that have double oc-
cupancy of orbital 4 or 2 (1+4+4=2+2+5=9, the total an-
gular momentum). Consequently, the absolute values of the
matrix elements also differ. However, the computed pair-
correlation function and edge Green’s function suggest that
many of the physical quantities are not significantly affected
by the absence of exact N representability and that the lack
of computer power might be the only real stumbling stone in
the way of the 2-RDMFT.

VI. CONCLUSIONS

In summary, we have applied the one-body reduced
density-matrix functional theory to small and large quantum
Hall droplets at the spin-polarized strong magnetic field re-
gime. The density-matrix power functional seems to work
reasonably well at the strongly correlated ¥<<1 regime where
the occupation numbers of the natural orbitals are small. The
newly applied method yields previously inaccessible valu-
able information with large particle numbers about the ener-
getics and quantities that derive from the one-body reduced
density matrix. The density-matrix power functional yields

reasonable bulk densities with the power parameter in the
range 0.65-0.7. However, the detailed properties of the edge
are not produced accurately with this functional. Moreover, it
is not known if a good functional for a specific quantum Hall
state would work universally at different filling fractions.
Nevertheless, the computationally expensive two-body re-
duced density-matrix method seems to facilitate the proper-
ties of the edge, though this should be verified with a larger
electron number in future.

Prospects of the 1-RDMFT in quantum Hall systems in-
clude generalizations to spin and multiple Landau levels.
Studies with systems without edge (sphere) and nontrivial
topology (torus) are also encouraged while new state of the
art energy functionals are of course very welcome.
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